Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 6, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Cells continuously experience and respond to different physical forces that are used to regulate their physiology and functions. Our ability to measure these mechanical cues is essential for understanding the bases of various mechanosensing and mechanotransduction processes. While multiple strategies have been developed to study mechanical forces within two-dimensional (2D) cell culture monolayers, the force measurement at cell-cell junctions in real three-dimensional (3D) cell models is still pretty rare. Considering that in real biological systems, cells are exposed to forces from 3D directions, measuring these molecular forces in their native environment is thus highly critical for the better understanding of different development and disease processes. We have recently developed a type of DNA-based molecular probe for measuring intercellular tensile forces in 2D cell models. Herein, we will report the further development and first-time usage of these molecular tension probes to visualize and detect mechanical forces within 3D spheroids and embryoid bodies (EBs). These probes can spontaneously anchor onto live cell membranes via the attached lipid moieties. By varying the concentrations of these DNA probes and their incubation time, we have first characterized the kinetics and efficiency of probe penetration and loading onto tumor spheroids and stem cell EBs of different sizes. After optimization, we have further imaged and measured E-cadherin-mediated forces in these 3D spheroids and EBs for the first time. Our results indicated that these DNA-based molecular tension probes can be used to study the spatiotemporal distributions of target mechanotransduction processes. These powerful imaging tools may be potentially applied to fill the gap between ongoing research of biomechanics in 2D systems and that in real 3D cell complexes.more » « less
-
Abstract Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid–liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA–protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.more » « less
-
Serverless computing is gaining popularity for machine learning (ML) serving workload due to its autonomous resource scaling, easy to use and pay-per-use cost model. Existing serverless platforms work well for image-based ML inference, where requests are homogeneous in service demands. That said, recent advances in natural language processing could not fully benefit from existing serverless platforms as their requests are intrinsically heterogeneous. Batching requests for processing can significantly increase ML serving efficiency while reducing monetary cost, thanks to the pay-per-use pricing model adopted by serverless platforms. Yet, batching heterogeneous ML requests leads to additional computation overhead as small requests need to be "padded" to the same size as large requests within the same batch. Reaching effective batching decisions (i.e., which requests should be batched together and why) is non-trivial: the padding overhead coupled with the serverless auto-scaling forms a complex optimization problem. To address this, we develop Multi-Buffer Serving (MBS), a framework that optimizes the batching of heterogeneous ML inference serving requests to minimize their monetary cost while meeting their service level objectives (SLOs). The core of MBS is a performance and cost estimator driven by analytical models supercharged by a Bayesian optimizer. MBS is prototyped and evaluated on AWS using bursty workloads. Experimental results show that MBS preserves SLOs while outperforming the state-of-the-art by up to 8 x in terms of cost savings while minimizing the padding overhead by up to 37 x with 3 x less number of serverless function invocations.more » « less
-
null (Ed.)Nearly all principal cloud providers now provide burstable instances in their offerings. The main attraction of this type of instance is that it can boost its performance for a limited time to cope with workload variations. Although burstable instances are widely adopted, it is not clear how to efficiently manage them to avoid waste of resources. In this paper, we use predictive data analytics to optimize the management of burstable instances. We design CEDULE+, a data-driven framework that enables efficient resource management for burstable cloud instances by analyzing the system workload and latency data. CEDULE+ selects the most profitable instance type to process incoming requests and controls CPU, I/O, and network usage to minimize the resource waste without violating Service Level Objectives (SLOs). CEDULE+ uses lightweight profiling and quantile regression to build a data-driven prediction model that estimates system performance for all combinations of instance type, resource type, and system workload. CEDULE+ is evaluated on Amazon EC2, and its efficiency and high accuracy are assessed through real-case scenarios. CEDULE+ predicts application latency with errors less than 10%, extends the maximum performance period of a burstable instance up to 2.4 times, and decreases deployment costs by more than 50%.more » « less
-
It's not a Sprint, it's a Marathon: Stretching Multi-resource Burstable Performance in Public CloudsDuring the past few years, all leading cloud providers introduced burstable instances that can sprint their performance for a limited period to address sudden workload variations. Despite the availability of burstable instances, there is no clear understanding of how to minimize the waste of resources by regulating their burst capacity to the workload requirements. This is especially true when it comes to non-CPU-intensive applications. In this paper, we investigate how to limit network and I/O usage to optimize the efficiency of the bursting process. We also study which resource shall be controlled to benefit both cloud providers and end-users. We design MRburst (Multi-Resource burstable performance scheduler) to automatically limit multiple resources (i.e., network, I/O, and CPU) and make the application comply with a user-defined service level objective (SLO) while minimizing wasted resources. MRburst is evaluated on Amazon EC2 using two multi-resource applications: an FTP server and a Ceph system. Experimental results show that MRburst outperforms state-of-the-art approaches by allowing instances to speed up their performance for up to 2.4 times longer period while meeting SLO.more » « less
An official website of the United States government

Full Text Available